博客
关于我
Leetcode|70. 爬楼梯【笔记】
阅读量:712 次
发布时间:2019-03-21

本文共 1026 字,大约阅读时间需要 3 分钟。

爬楼梯问题解析

爬楼梯问题要求我们计算爬到n阶楼梯的不同方法数,每次可以爬1或2阶台阶。这个问题可以通过斐波那契数列来解决,其解答方法包括递归、动态规划、矩阵快速幂等。

4种常见解法:

  • 递归方法

    递归的思路是用费波那契的性质: f(n) = f(n-1) + f(n-2)
    例子:

    import functools@functools.lru_cache(maxsize=None)def climbStairs(n: int) -> int:    if n == 1:        return 1    if n == 2:        return 2    return climbStairs(n - 1) + climbStairs(n - 2)
  • 动态规划优化

    使用动态规划存储前两步结果,节省空间。
    例子:

    def climbStairs(n: int) -> int:    if n == 1 or n == 2:        return n    a, b, temp = 1, 2, 0    for i in range(3, n + 1):        temp = a + b        a = b        b = temp    return temp
  • 斐波那契公式

    使用矩阵快速幂或公式直接计算。
    例子:

    import mathdef climbStairs(n: int) -> int:    if n < 2:        return 1    sqrt5 = math.sqrt(5)    return int(( (1 + sqrt5) ** (n + 1) - (1 - sqrt5) ** (n + 1) ) / (2 * sqrt5))
  • 斐波那契数列的通项

    借助斐波那契数列的通项计算。
    例子:

    import mathdef climbStairs(n: int) -> int:    if n == 1:        return 1    elif n == 2:        return 2    elif n < 0:        return 0    return _fib(n + 1)
  • 关键点总结:

    • 问题基于斐波那契数列。
    • 递归角度计算,需缓存优化。
    • 动态规划优化空间使用,常数空间。
    • 斐波那契公式适用于大数计算。
    • 动态规划常数空间优化方案较为高效。

    转载地址:http://pgaez.baihongyu.com/

    你可能感兴趣的文章
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy学习笔记3-array切片
    查看>>
    numpy数组替换其中的值(如1替换为255)
    查看>>
    numpy数组索引-ChatGPT4o作答
    查看>>
    NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
    查看>>
    Numpy矩阵与通用函数
    查看>>